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Subharmonic bifurcations of standing wave lattices in a driven ferrofluid system
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Superlattice standing waves arising on the surface of ferrofluids that are driven by an ac magnetic field are
investigated experimentally. Several different types are obtained through successive spatial period doublings,
which are mediated by resonant mode interactions. The observed superlattices are quite diverse, depending on
the relevant base Fourier modes, the orientation and the number of emerged subharmonic modes, and the phase
difference among the involved modes all together. On the other hand, their temporal evolutions are all either
period-1~harmonic! or period-2~subharmonic!.
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I. INTRODUCTION

Pattern formation in a spatially extended nonequilibriu
system has been a subject of numerous studies during the
decade. Various laboratory and model systems are devel
and characterized in different scientific disciplines@1#.
Among others, perhaps the most important concern in th
efforts has been to understand ‘‘simple crystalline patter
that arise due to a single mode instability@1–4#. This is now
a well established topic. Subsequently, an immediate q
tion one might ask is if there are any generic routes alo
which the morphological complexity of a simple pattern i
creases in a systematic way. Much of the current rese
effort related to nonequilibrium pattern formation now li
on this venue of thought.

In many cases, one can view pattern forming nonequi
rium systems as a coupled network of nonlinear oscillato
Then, the morphological complexity of the pattern is e
pected to be related to the temporal dynamics of the cons
ent oscillators. Indeed, a series of recent model studies
laboratory experiments on different reaction-diffusion s
tems has shown that a subharmonic bifurcation of local
cillators in time domain can lead to a spatially perio
doubled traveling wave state@5–8#. A number of such
subharmonic bifurcations can then result in highly comp
yet periodic patterns. In a different class of systems, ho
ever, such complex patterns can be induced not by the c
plexity of local dynamics but by resonant mode interactio
Pattern forming nonlinear systems are often able to gene
different spatial modes simultaneously, and resonant inte
tions among these base modes can result in various com
periodic lattice~superlattice! patterns. This different class o
patterns is a subject of extensive current investigati
@9–16#.

In our earlier study, we showed that a resonant supe
tice can be formed in a magnetically driven ferrofluid syst
@17#. The observed superlattice pattern arises in a bicrit
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situation in which a hexagonal lattice generated by the st
Rosensweig instability@18# interacts with a subharmoni
square lattice generated by the Faraday instability. Here,
demonstrate that sequences of such a resonant mode int
tion can exhibit successive spatial subharmonic bifurcati
as shown in Fig. 1. With a resonant mode interaction, a s
harmonic mode emerges rendering a spatially ‘‘perio
doubled’’ superlattice. As the control parameters are var
further, another subharmonic bifurcation takes place prod
ing a more complex yet still periodic superlattice. As it w
be demonstrated, the morphology of the resulting super
tice can be quite diverse depending on the involved b
wave vectors, the orientation and number of the emer
~primary and secondary! subharmonic modes, and the pha
difference among the selected Fourier modes. The temp
dynamics of the observed superlattices are, however, e
harmonic or subharmonic, unlike the case of complex os
latory media, in which the spatial and temporal complexit
increase or decrease simultaneously.
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FIG. 1. Successive spatial period doublings of a hexagonal
tice: ~a! harmonic hexagon 1h( f 56.20 Hz,DH50.17Hc); ~b! spa-
tially period-2 harmonic superlattice 2h( f 55.60 Hz,DH
50.50Hc); and ~c! spatially period-4 subharmonic superlattic
4H( f 56.06 Hz,DH50.42Hc) are shown at the top row.Hc

(5108.0 G) is the critical field of the static Rosensweig instabili
Each frame is 61361mm2. Each hexagonal tiling unit is guided b
white line. The corresponding Fourier modes are shown at the
tom row.
©2002 The American Physical Society22-1
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II. EXPERIMENT

The patterns are observed in a magnetically driven F
day system employing ferrofluids@17,19,20#. Ferrofluids are
a colloidal suspension of magnetic powder stabilized
screened electrostatic repulsion@18#. Unless specified other
wise, 1:1 mixture of commercially available ferrofluid
~EMG901 and EMG909, Ferrofluidics! are used. The physi
cal properties of EMG901~EMG909! are, density r
51.53 (1.02)g/ml, surface tensions527.5 (27.5)g/s2, ini-
tial magnetic susceptibilityx53.00 (0.80), magnetic satu
ration Ms5600 (200)G, and dynamic viscosityh
510 (6) CP, yielding a critical field of static Rosenswe
instability 90.5 (168.2)G, respectively. A cylindrical Teflo
container containing the ferrofluid (fluid depth51.16 mm,
container depth550 mm, and inner diameter5140 mm) is
placed in the center of a pair of Helmholtz coils with an inn
~outer! diameter of 200 mm~280 mm!. The distance betwee
two coils is 120 mm. The magnetic field is monitored by
hall probe ~F. W. Bell Inc., Model 6010!, and the spatial
variation of the field strength is within 3% in the monitore
area. An ac signal is generated from a home-built synthes
board and amplified by a linear amplifier driving the to
magnetic field ofH(t)5H01DH sin(2pft). H0 is the static
field, DH is the amplitude of ac component, andf is the
driving frequency.H0 is fixed at 0.93Hc for all cases, while
DH andf are used as control parameters. The temperatur
the container is maintained at 15 °C.

The fluid surface is illuminated by three arrays of conce
tric light-emitting diode rings~diameters 160, 180, an
200 mm, respectively! located 275 mm above the surfac
The patterns are imaged at a resolution of 5303512 pixels
using a charged-coupled device camera~Quantix, Photomet-
rics! located 560 mm above the surface with a frame gr
ber ~Meteor2/DIG, Metrox! in stroboscopic modes with a
exposure time of 3 ms. The flat surfaces either above
below the level of surrounding fluid appear white, while t
nonflat surfaces that scatter the light away from the cam
appear black.

III. HEXAGON-BASED SUPERLATTICES

A good example of successive spatial period doubling
shown in Fig. 1. Figure 1~a! shows a temporally harmoni
hexagonal standing wave pattern (1h, the nomenclature is
given in Ref.@21#! and the associated six Fourier peaks (kW ).
This pattern, which forms in a vicinity of the Rosenswe
~static! instability, is simply periodic both in space and tim
As the driving amplitude and frequency are increased, h
ever, the 1h pattern undergoes a subharmonic bifurcat
resulting in a spatially period-doubled hexagonal superlat
(2h) as shown in Fig. 1~b!. The magnitude of the newly
emerged six subharmonic wave vectors (kW8), that are rotated
30° relative to the six base modes (kW ), areA3 times smaller
than the original base wave vectors. The 2h pattern is still
harmonic in time.

As the driving frequency increases, the 2h superlattice
undergoes another subharmonic bifurcation in space@see Fig.
1~c!# — a set of six secondary subharmonic modes (kW9) ap-
05622
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pears in addition to the base modes (kW ) and the six primary
subharmonics (kW8), thus forming a spatially ‘‘period-4’’ hex-
agonal superlattice (4H). Unlike the case of the first subha
monic bifurcation, the secondary subharmonic wave vec
are twice smaller than those of the primary subharmon
lining up with the primary subharmonics. The 4H superlat-
tice is temporally subharmonic. The underlying mechani
for the observed spatial subharmonic bifurcations is belie
to be resonant mode interactions.

Let us first discuss the resonant mode interaction resul
in a hexagonal superlattice 2H pattern that is shown in Fig
2~a!. The 2H originates from a resonant triadal interpla
between harmonic hexagonal modes of 1h and subharmonic
square modes of 1S1. As shown in Fig. 2~b!, of the total 12
relevant Fourier modes of 2H ~‘‘ d ’’ ! six outer peaks exactly
overlap with the basic Fourier modes of 1h(s). The six
Fourier modes of 1h are obtained by linearly extrapolatin
the empirically measured dispersion relation shown in Fig
Similarly, the four Fourier modes of 1S1 (h) are obtained
from Fig. 3. The inner subharmonic peaks of 2H ~six points
marked by ‘‘d ’’ lying along the circle! have two different
origins. The two points lying along theky axis are neighbor-

FIG. 2. Generation of 2H hexagonal superlattice by resona
triadal interaction:~a! snapshot of 2H pattern (f 58.00 Hz,DH
50.25Hc , field of view544344mm2!; ~b! twelve modes of 2H
@d, measured from~a! directly; for clarity, only the positions of the
Fourier vectors are marked#, six harmonic hexagonal modes of 1h
(s, obtained from Fig. 3!, four subharmonic square modes of 1S1

(h, obtained from Fig. 3!, and some elementary modes genera
by triadal interactions (1) between 1h and 1S1; and ~c! recon-
structed image based on the twelve measured modes of 2H(d).

FIG. 3. Dispersion relation measured forDH50.15Hc .
2-2
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ing a Fourier peak of 1S1 ~open square! very closely. Thus,
most likely they originate from 1S1 lattice. On the other
hand, each one of the four remaining inner peaks are clo
located to a resonant mode (1) of 1h and 1S1. Here, in
particular, the relevant resonant modes are the ones sa
ing kW 15kW s2kW h . Since the 2H pattern involves the Fourie
modes of 1S1 lattice, it naturally has a subharmonic oscill
tion in time as a whole.

Figure 2~c! is a reconstructed Fourier image purely bas
on the measured twelve Fourier vectors of 2H @‘‘ d ’’ in Fig.
2~b!#. The image captures the three different cell types t
are present in Fig. 2~a!. The relative phase difference be
tween the harmonic and subharmonic modes turns out t
quite important in determining the morphology of the co
cerned superlattice. The phase difference ofp/2 is required
in order to achieve a hexagonal superlattice that has t
different cell types. If the phase difference between the h
monic and subharmonic modes is zero, only two differ
cell types exist as in the case of 2h.

Although the 2h pattern has almost the same Four
spectrum of 2H as shown in@Fig. 1~b!#, it is different from
2H in several aspects:~1! 2H is subharmonic in time, while
2h is harmonic;~2! the six subharmonic Fourier peaks of th
2h pattern cannot be obtained by the same triadal interac
of 1h and 1S1 modes that resulted the 2H pattern;~3! 2H is
observed in a ‘‘small amplitude forcing regime’’ while 2h is
observed in a ‘‘large amplitude forcing regime.’’ These d
ferences all together suggest that the 2h pattern does no
arise by a simple resonant triadal interaction but by a hig
order resonant interaction beyond the three-wave interac
Since there are so many possible resonant modes at hig
order regime, it is currently beyond our limit to discuss e
actly which resonant modes are participating in the 2h pat-
tern. The fact that the 2h pattern has a simple harmon
oscillation also excludes any possible connection to a hig
order resonant tongue associated with the Faraday instab
~e.g., 3f /2 tongue!. Similarly, the observed 4H pattern would
be explained only by a higher-order resonant interaction
fact, the 2h and 4H patterns are observed in a large amp
tude regime in which high-order resonant interactions wo
become important.

IV. SQUARE-BASED SUPERLATTICES

Similar spatial subharmonic bifurcations are also o
served in a square lattice as well. Figure 4 shows three
ferent square superlattices 2Sa , 2Si , and 4Sa formed by
resonant mode interactions. The temporally subharmo
square standing wave 1S1 undergoes a spatial subharmon
bifurcation to either 2Sa @Fig. 4~a!# or 2Si @Fig. 4~b!#, as the
system is brought into a large amplitude regime. Only a p
of subharmonic wave vectors newly appears along one of
two symmetric axes of the preexisting four base vectors
anisotropic 2Sa , while two pairs of subharmonics appe
simultaneously forisotropic 2Si . Consequently, 2Sa is spa-
tially period-doubled only in one direction (y axis for the
given example!, whereas 2Si is doubled in bothx and y
directions. The transition between two neighboring sta
2Sa and 2Si is found to be continuous. In other words, th
05622
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additional pair of subharmonic modes alongkx axis gradu-
ally appears from 2Sa pattern rendering 2Si pattern, as the
driving frequency or amplitude is increased@22#.

When the system is moved further from 2Si to a higher-
frequency regime, an additional doubling occurs resulting
the 4Sa pattern shown in Fig. 4~c!. The complex square su
perlattice 4Sa has total ten Fourier modes including fou
base vectors of 1S1, four primary subharmonics of 2Si , and
a new pair of secondary subharmonics along one of the
principal axes. This additional pair is exactly half the size
the preexisting primary subharmonics. Thus, thex-y symme-
try is lost in 4Sa as in the case of 2Sa . In our current ex-
perimental condition, no isotropic 4S superlattice has bee
found.

Careful analysis on the Fourier modes of all three squ
superlattices 2Sa , 2Si , and 4Sa has been carried out in con
junction with all possible triadal resonant interactions b
tween the modes of two basic lattices 1h and 1S1. The
agreements between the observed modes and the modes
erated by triadal mode interactions turn out to be poor for
primary subharmonics of 2Sa and 2Si , and worse for the
secondary subharmonics of 4Sa . In other words, these
square-based superlattices do not originate from triadal m
interactions. We believe that they arise with higher-ord
resonant interactions between 1h and 1S1

V. OTHER PATTERNS AND PHASE DIAGRAM

The spatial periodicity of 4 is the highest thus achieved
far, but in principle, the doubling cascade can go on furt
as the number of modes participating in the resonant in
action increases. On the contrary, some of the high-or
resonant mode interactions can produce simple lattice
terns as well. A good example is the subharmonic squ
lattice 1S2 observed in a large amplitude regime. Although
is identical to the 1S1 pattern in all aspects, its Fourie
modes have a quite different origin — none of its four wa
vectors match the wave vectors of 1h, 1S1, or the ones cre-
ated by triadal interactions between them. This is also t
for the harmonic rhombus 1r also observed in a large ampl
tude regime.

The phase diagram shown in Fig. 5 summariz

FIG. 4. Successive spatial period doublings of a square latt
The simple subharmonic square 1S1 ~not shown! bifurcates to ei-
ther ~a! spatially period-2anisotropicsquare 2Sa( f 56.52 Hz,DH
50.30Hc) or ~b! spatially period-2 isotropic square 2Si( f
57.00 Hz,DH50.30Hc). ~c! The 2Si superlattice further bifur-
cates to spatially period-4 anisotropic square 4Sa( f
57.00 Hz,DH50.29Hc). Each frame is 44344 mm2. Each
square~or rectangular! tiling unit is guided by white line.
2-3
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the rich variety of observed patterns and their relat
locations—all togethertwelvedifferent types are revealed. I
addition to the ones discussed earlier, simple harmo
square lattice 1s and subharmonic rhombus 1R are also ob-
served in a small amplitude regime. The 1R forms with con-
ventional triadal interaction@23#. The 1s pattern neighboring
1h is very similar to the ones discussed in previous repo
@10,12#. The transitions between two neighboring patte
are all hysteretic@24# except for the one between 2Sa and
2Si , which is continuous as described earlier. The ove
structure of the phase diagram depends quite sensitivel
the property of the used ferrofluid. For a comparison,
have conducted the same experiment with 2:1 mixture
EMG901 and EMG909 to find no superlattice whatsoev

FIG. 5. Phase diagram of standing wave patterns revealed
magnetically driven ferrofluid withH050.93 Hc . All together, six
different superlattices (2h, 2H, 4H, 2Si , 2Sa , 4Sa! and six dif-
ferent simple lattices (1h, 1s, 1S1 , 1S2 , 1r , 1R) are observed.
The nomenclature of the observed patterns is described in Ref.@21#.
ett
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and with EMG901 only to find a superlattice of the 2H type.
Nevertheless, the two basic competing lattices, 1h and 1S1,
are both present in all three different cases. In other wo
the two primary instabilities are not is sensitive to the pro
erty of the fluid, but the resonant mode interactions are.

VI. CONCLUSION

We have investigated superlattice standing wave patte
that arise on the surface of parametrically driven ferroflui
All together, six different superlattices along with six diffe
ent simple lattice patterns are observed. It is significant t
all the observed superlattices arise through spatial sub
monic bifurcations mediated by resonant mode interactio
A similar spatial period-doubling phenomenon is report
earlier in the context of traveling waves of complex oscil
tory media@5,8#, but here it is discussed in the context
standing waves and resonant mode interaction. The obse
superlattices are temporally simple~either harmonic or sub-
harmonic to the forcing!, again in good contrast to the com
plex periodic traveling waves that are complex oscillatory
time as well. Our experimental results raise a number of n
theoretical issues such as~1! why the subharmonic modes o
the base wave vectors are so much preferred by reso
interactions over various other possible resonant modes,
~2! what would be the maximum spatial complexity that c
be achieved by resonant mode interaction under a given
dition. Full understanding of the rich variety of standin
wave patterns and their mutual boundaries also pose qu
challenge.
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represents hexagon,S represents square, andR represents
rhombus! and the temporal behavior~small letter: harmonic in
time to the magnetic ac forcing, capital letter: subharmonic
the forcing!. The following additional subscripts are used wh
necessary~i for isotropic,a for anisotropic, 1 for 1st kind, and
2 for 2nd kind!.

@22# Since the acquired full image is not sufficiently large to rev
the subharmonic Fourier peaks clearly, we quantified this tr
sition by directly measuring the ratio~m! of two different cell
05622
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sizes along thex axis. The order parameterm decays continu-
ously from 2Si to 2Sa . The driving frequencyf is varied while
maintainingDH50.30Hc .

@23# Our 1R pattern has the same origin of the ‘‘two-mode rhom
boid’’ (2kR) pattern described in Ref.@12# except that all four
Fourier modes of the 1R pattern are resonant modes where
only two out of four are such for the 2kR pattern.

@24# The bistable ranges are typically an order ofd f 50.1 Hz and
d @DH/Hc#50.02.
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